Demystifying AI
2023-08-15 , N:O:R:T:x
Language: Deutsch

Der Vortrag "Demystifying AI"  soll den Zuhörerinnen eine fundierte und verständliche Einführung in das Thema Artificial Intelligenz (AI) bieten. Der Erfolg von ChatGPT hat den Eindruck erweckt, dass AI langsam den Menschen ersetzen kann. Zusätzlich haben die großen Player ein großes Interesse daran AI als eine schwierige und komplexe Technologie darzustellen. Mit diesem Talk trete ich diesem Trend entgegen und blicke hinter die Kulissen des Maschinellen Lernens. Das Ziel des Talks ist es, die Grundlagen des Maschinellen Lernens zu erklären, da dies die aktuelle Form der AI ist, die wir momentan nutzen. Zusätzlich möchte ich versuchen, den schwer verständlichen Jargon aufzubrechen und damit besser greifbar zu machen.


Der Talk beginnt mit einer Erläuterung der verschiedenen Arten des Maschinellen Lernens. Durch Beispiele werde ich erklären, wie diese Lernmethoden funktionieren und welche Probleme sie lösen können. Das überwachte Lernen beinhaltet das Trainieren eines Modells anhand von Eingabe- und Ausgabedaten, während das unüberwachte Lernen nach Mustern und Gruppierungen in den Daten sucht. Beim verstärkenden Lernen interagiert das Modell mit einer Umgebung, um Belohnungen zu maximieren. Dieser Überblick ermöglicht es den Zuhörerinnen ein umfassenderes Verständnis für die Funktionsweise und Anwendungsbereiche des maschinellen Lernens zu bekommen. Ich werde dabei besonders auf die Gemeinsamkeiten der verschiedenen Ansätze eingehen, um den Teilnehmerinnen die Möglichkeit zu geben den grundlegenden Zusammenhang zu erkennen.

Den Schwerpunkt des Vortrags werde ich darauf legen, die mathematischen Grundlagen des Maschinellen Lernens zu erklären. Dabei werde ich erläutern, wie das Training von ML-Modellen durchgeführt wird und welche Schritte dabei im Detail stattfinden. Es wird deutlich, dass das Training eines ML-Modells im Wesentlichen auf der Optimierung einer Kostenfunktion basiert, um die besten Modellparameter zu finden. Die Zuhörerinnen werden verstehen, wie das Training mathematisch formuliert ist und welche Algorithmen dabei verwendet werden, um die Modellgewichte anzupassen und die Fehler zu minimieren.

Am Ende des Vortrags werde ich die Herausforderungen und Fallstricke des maschinellen Lernens diskutieren. Hierbei werden Themen wie Datenvorverarbeitung, Overfitting, Bias und Erklärbarkeit kurz behandelt, um den Zuhörerinnen ein Verständnis der potenziellen Schwierigkeiten beim Einsatz von Maschinellem Lernen zu vermitteln. Ich werde erläutern, wie die Qualität der Daten einen großen Einfluss auf die Leistung des Modells hat und welche Schritte unternommen werden können, um die Datenqualität zu verbessern. Zudem werde ich erklären, wie Overfitting vermieden werden kann, indem Modelle an zusätzlichen Testdaten überprüft werden. Die Diskussion über Bias und Erklärbarkeit soll die Zuhörerinnen sensibilisieren, dass maschinelles Lernen nicht frei von Vorurteilen ist und dass es wichtig ist, die Entscheidungen und Vorhersagen von Modellen nachvollziehen und erklären zu können.

Abschließend werde ich praktische Tipps und Ressourcen für den Einstieg in das Maschinelle Lernen geben. Die Teilnehmerinnen erhalten Empfehlungen für Bücher, Online-Kurse und Communitys, um ihr Wissen weiter auszubauen und eigene Projekte zu starten.
Durch die Inhalte meines vortrags möchte ich dazu beitragen, den Einsatz von AI differenziert zu betrachten und kritisch zu hinterfragen.

Ich habe Mathe studiert und anschließend eine Promotion im Bereich angewandter Optimierung gemacht. Als Postdoc habe versucht Reinforcement Learning und Molekulardynamik zusammen zu bringen und habe die Vorlesung Maschine Learning für Data Science betreut. Ich habe beim KI Camp der Gesellschaft für Informatik (2021) einen Vortag über Reinforcement Learning gehalten. Diese Jahr habe ich zusammen mit Linus Neumann über das Thema KI und Security bei der Heise Security Show gesprochen.